Category: Diet

Autophagy and disease

Autophagy and disease

Mistargeting of SH3TC2 away from the recycling dusease causes Charcot-Marie-Tooth Hunger control remedies type 4C. Spillantini Autophagy and disease, Autopagy ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. This paper reports macro-fluidophagy of the fluid-like SQSTM1 condensates that wet to autophagosomal membranes. Takahashi S, Kubo K, Waguri S, Yabashi A, Shin H-W, Katoh Y, et al. Son, J.

Autophagy and disease -

Mitochondrial impairment, apoptosis and autophagy in a rat brain as immediate and long-term effects of perinatal phencyclidine treatment - influence of restraint stress.

Psychiatry 66, 87— Jia, J. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Kabeya, Y. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.

EMBO J. Kara, N. Lack of effect of chronic ketamine administration on depression-like behavior and frontal cortex autophagy in female and male ICR mice. Trehalose induced antidepressant-like effects and autophagy enhancement in mice. Psychopharmacology , — Karabiyik, C.

Essays Biochem. Kegel, K. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. Keller, J. Kiel, J. Autophagy in unicellular eukaryotes. B Biol. Kieseppa, T. High concordance of bipolar I disorder in a nationwide sample of twins. Kirkin, V.

A role for ubiquitin in selective autophagy. Cell 34, — Klein, P. A molecular mechanism for the effect of lithium on development.

Koike, M. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Komatsu, M. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration.

Kou, X. Nutrients 9:E Kroemer, G. Autophagic cell death: the story of a misnomer. Kuhn, M. Fear extinction as a model for synaptic plasticity in major depressive disorder.

PLoS One 9:e Larsen, M. Regulation of brain-derived neurotrophic factor BDNF in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. Lee, J. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations.

Cell , — Leker, R. NAP, a femtomolar-acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke 33, — Leliveld, S.

Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease.

Levine, B. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Cell 6, — PubMed Abstract Google Scholar.

Autophagy in the pathogenesis of disease. Cell , 27— Li, D. Changes of TSPO-mediated mitophagy signaling pathway in learned helplessness mice. Psychiatry Res. Li, N. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.

Li, Q. Lithium reduces apoptosis and autophagy after neonatal hypoxia-ischemia. Cell Death Dis. Lieberman, J.

Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Psychiatry 46, — Lim, J.

Binding preference of p62 towards LC3-ll during dopaminergic neurotoxin-induced impairment of autophagic flux. Autophagy 7, 51— Liu, X. Liu, Y. Lu, J. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy.

Autophagy 8, 98— Manji, H. Lithium: a molecular transducer of mood-stabilization in the treatment of bipolar disorder. Neuropsychopharmacology 19, — Markossian, K. Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes.

Biochemistry 69, — Martin, J. Pathogenesis and management. Martinet, W. Autophagy in disease: a double-edged sword with therapeutic potential. Martinez-Vicente, M. Autophagy and neurodegeneration: when the cleaning crew goes on strike.

Lancet Neurol. Mazure, N. Hypoxia-induced autophagy: cell death or cell survival? McGuffin, P. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Psychiatry 60, — Meffre, J.

EMBO Mol. Meijer, A. Signalling and autophagy regulation in health, aging and disease. Aspects Med. Menzies, F. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities.

Neuron 93, — Merenlender-Wagner, A. Autophagy has a key role in the pathophysiology of schizophrenia. Psychiatry 20, — NAP davunetide enhances cognitive behavior in the STOP heterozygous mouse—a microtubule-deficient model of schizophrenia. Peptides 31, — New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia.

Autophagy 10, — Miguel-Hidalgo, J. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. Mimmack, M. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome Mizushima, N.

Autophagy: process and function. Genes Dev. Autophagy fights disease through cellular self-digestion. Moloudizargari, M. Autophagy, its mechanisms and regulation: implications in neurodegenerative diseases. Ageing Res. Morozova, M. Add-on clinical effects of selective antagonist of 5HT6 receptors AVN CD in patients with schizophrenia stabilized on antipsychotic treatment: pilot study.

CNS Spectr. Nagata, E. Neuroreport 15, — Narendra, D. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.

Ng, C. Nikoletopoulou, V. Crosstalk between apoptosis, necrosis and autophagy. Acta , — Nishino, I. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy Danon disease.

Nixon, R. Autophagy, amyloidogenesis and Alzheimer disease. Cell Sci. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Induced pluripotent stem cell iPSC models of bipolar disorder. Neuropsychopharmacology 40, — Pan, T. Rapamycin protects against rotenone-induced apoptosis through autophagy induction.

Neuroscience , — Perala, J. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Psychiatry 64, 19— Perrotta, C. The emerging role of acid sphingomyelinase in autophagy. Apoptosis 20, — Phiel, C.

Molecular targets of lithium action. Pickford, F. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. Puyal, J.

Targeting autophagy to prevent neonatal stroke damage. Autophagy 5, — Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders.

Neuroscientist 18, — Qin, Z. Autophagy regulates the processing of amino terminal huntingtin fragments. Racagni, G. Cellular and molecular mechanisms in the long-term action of antidepressants.

Dialogues Clin. Ravikumar, B. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Rapamycin pre-treatment protects against apoptosis. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.

Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Renna, M. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. Rezin, G.

Mitochondrial dysfunction and psychiatric disorders. Ross, C. Protein aggregation and neurodegenerative disease. Rubinsztein, D. Autophagy modulation as a potential therapeutic target for diverse diseases.

Drug Discov. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11— Potential therapeutic applications of autophagy.

Rusmini, P. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 15, — Sade, Y. Psychiatry 6:e Samara, C. Autophagy is required for necrotic cell death in Caenorhabditis elegans.

Sapp, E. Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington disease. Sarkar, S. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.

Lithium induces autophagy by inhibiting inositol monophosphatase. Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2, — Sasaki, T.

Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model. Scaini, G. Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications.

Scott, R. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Scrivo, A. Selective autophagy as a potential therapeutic target for neurodegenerative disorders.

Settembre, C. TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes. Autophagy 7, — Shelton, R. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression.

Psychiatry 16, — Shibata, M. Regulation of intracellular accumulation of mutant huntingtin by beclin 1. Shintani, T. Autophagy in health and disease: a double-edged sword. Simoncini, C.

Son, J. Neuronal autophagy and neurodegenerative diseases. Spilman, P. PLoS One 5:e Stambolic, V. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Stoka, V. Lysosomal cathepsins and their regulation in aging and neurodegeneration.

Takahashi, S. Association of SNPs and haplotypes in APOL1, 2 and 4 with schizophrenia. Tandon, R. Definition and description of schizophrenia in the DSM Tanida, I.

LC3 and autophagy. Methods Mol. Taylor, J. Toxic proteins in neurodegenerative disease. Tellez-Nagel, I. Terry, R. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell. Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae.

FEBS Lett. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Müller F, et al.

Genes Dev. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al.

Loss of autophagy in the central nervous system causes neurodegeneration in mice. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M.

Alpha-synuclein in Lewy bodies. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.

Nat Med. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI.

Abnormal phosphorylation of the microtubule-associated protein tau tau in Alzheimer cytoskeletal pathology. Ihara Y, Nukina N, Miura R, Ogawara M. J Biochem Tokyo. Article CAS Google Scholar. Goedert M. Tau filaments in neurodegenerative diseases.

Glenner GG, Wong CW. Biochem Biophys Res Commun. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. The structure of the presenilin 1 S gene and identification of six novel mutations in early onset AD families.

St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, et al. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus.

De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al.

Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al.

TDP mutations in familial and sporadic amyotrophic lateral sclerosis. Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al.

Shaw CE, Enayat ZE, Powell JF, Anderson VE, Radunovic A, al Sarraj S, et al. Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation.

Shibata N, Hirano A, Kobayashi M, Siddique T, Deng HX, Hung WY, et al. Intense superoxide dismutase-1 immunoreactivity in intracytoplasmic hyaline inclusions of familial amyotrophic lateral sclerosis with posterior column involvement.

J Neuropathol Exp Neurol. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.

Mori K, Weng S-M, Arzberger T, May S, Rentzsch K, Kremmer E, et al. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9plinked ALS-FTD.

DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain.

Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al. J Cell Biol. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.

Google Scholar. Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model.

J Neurochem. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM, et al.

Fox JH, Connor T, Chopra V, Dorsey K, Kama JA, Bleckmann D, et al. Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang W-C, Page DT, et al. Sci Signal.

Wold MS, Lim J, Lachance V, Deng Z, Yue Z. Nascimento-Ferreira I, Nóbrega C, Vasconcelos-Ferreira A, Onofre I, Albuquerque D, Aveleira C, et al. Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease.

Brain J Neurol. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, et al. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease.

Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. Webster CP, Smith EF, Grierson AJ, De Vos KJ. C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy.

Small GTPases. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world.

Trends Cell Biol. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein.

Nat Biotechnol. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow E-M, et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D.

Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, et al.

Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K.

Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy.

Orenstein SJ, Kuo S-H, Tasset I, Arias E, Koga H, Fernandez-Carasa I, et al. Interplay of LRRK2 with chaperone-mediated autophagy. Wang B, Cai Z, Tao K, Zeng W, Lu F, Yang R, et al.

Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7.

Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, et al. J Neurosci Off J Soc Neurosci. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, et al.

Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, et al.

Microautophagy of Cytosolic Proteins by Late Endosomes. Sharma M, Burré J, Bronk P, Zhang Y, Xu W, Südhof TC.

CSPα knockout causes neurodegeneration by impairing SNAP function. Uytterhoeven V, Lauwers E, Maes I, Miskiewicz K, Melo MN, Swerts J, et al. Hsc70—4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy.

Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, et al. NBR1 acts as an autophagy receptor for peroxisomes. Farré J-C, Manjithaya R, Mathewson RD, Subramani S. PpAtg30 Tags Peroxisomes for Turnover by Selective Autophagy. Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae.

Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus.

Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al.

PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine Open Biol.

Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, et al. Broad activation of the ubiquitin—proteasome system by Parkin is critical for mitophagy. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization.

Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al.

Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS, et al. Genes Cells. Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ.

Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ.

Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, et al.

Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Chung SY, Kishinevsky S, Mazzulli JR, Graziotto J, Mrejeru A, Mosharov EV, et al.

Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Rep. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD.

Lancet Lond Engl. Exner N, Lutz AK, Haass C, Winklhofer KF. Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, et al.

Patho- physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep. Hou X, Fiesel FC, Truban D, Castanedes Casey M, Lin W, Soto AI, et al.

Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, et al.

Bonello F, Hassoun SM, Mouton-Liger F, Shin YS, Muscat A, Tesson C, et al. Smith GA, Jansson J, Rocha EM, Osborn T, Hallett PJ, Isacson O. Mol Neurobiol.

Moss DJH, Pardiñas AF, Langbehn D, Lo K, Leavitt BR, Roos R, et al. Khalil B, El Fissi N, Aouane A, Cabirol-Pol MJ, Rival T, Liévens JC. Cell Death Dis. Moore AS, Holzbaur ELF. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy.

Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. Heo JM, Ordureau A, Swarup S, Paulo JA, Shen K, Sabatini DM, et al. RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway.

Sci Adv. Yamano K, Wang C, Sarraf SA, Münch C, Kikuchi R, Noda NN, et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. Jimenez-Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy.

de Majo M, Topp SD, Smith BN, Nishimura AL, Chen H-J, Gkazi AS, et al. ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiol Aging. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Ryu D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N, Nicolet-Dit-Félix AA, et al.

Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R.

Anti-inflammatory effect of IL mediated by metabolic reprogramming of macrophages. Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, et al.

Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.

Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Jiang T, Yu J-T, Zhu X-C, Zhang Q-Q, Cao L, Wang H-F, et al.

Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Du J, Liang Y, Xu F, Sun B, Wang Z. J Pharm Pharmacol. Son SM, Shin H-J, Byun J, Kook SY, Moon M, Chang YJ, et al.

Metformin Facilitates Amyloid-β Generation by β- and γ-Secretases via Autophagy Activation. J Alzheimers Dis JAD. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, et al.

Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Li Y, Guo Y, Wang X, Yu X, Duan W, Hong K, et al.

Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis.

Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, et al. Neurosci Lett. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein.

Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, et al.

Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective. Front Mol Neurosci. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, et al.

Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, et al. Nat Chem Biol. Hirano K, Fujimaki M, Sasazawa Y, Yamaguchi A, Ishikawa K-I, Miyamoto K, et al. Neuroprotective effects of memantine via enhancement of autophagy.

Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. Neefjes J, Jongsma MML, Berlin I. Stop or Go? Endosome Positioning in the Establishment of Compartment Architecture, Dynamics, and Function. Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system.

Cold Spring Harb Perspect Biol. Burd C, Cullen PJ. Retromer: a master conductor of endosome sorting. van der Sluijs P, Hull M, Webster P, Mâle P, Goud B, Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway.

Gorvel JP, Chavrier P, Zerial M, Gruenberg J. rab5 controls early endosome fusion in vitro. Babbey CM, Ahktar N, Wang E, Chen CC-H, Grant BD, Dunn KW.

Rab10 Regulates Membrane Transport through Early Endosomes of Polarized Madin-Darby Canine Kidney Cells. Proikas-Cezanne T, Gaugel A, Frickey T, Nordheim A. Rab14 is part of the early endosomal clathrin-coated TGN microdomain.

Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JAM, Bennett H, Jones AT. A role for the small GTPase Rab21 in the early endocytic pathway.

Mesa R, Salomón C, Roggero M, Stahl PD, Mayorga LS. Rab22a affects the morphology and function of the endocytic pathway. CAS PubMed Google Scholar. Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol. Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, et al.

Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. Kim WT, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice.

Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Fasano D, Parisi S, Pierantoni GM, De Rosa A, Picillo M, Amodio G, et al. Alteration of endosomal trafficking is associated with early-onset parkinsonism caused by SYNJ1 mutations.

Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M. Front Neurosci. Köroğlu Ç, Baysal L, Cetinkaya M, Karasoy H, Tolun A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord. Follett J, Fox JD, Gustavsson EK, Kadgien C, Munsie LN, Cao LP, et al.

DNAJC13 p. AsnSer, implicated in familial parkinsonism, alters membrane dynamics of sorting nexin 1. Freeman CL, Hesketh G, Seaman MNJ. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation.

Connor-Robson N, Booth H, Martin JG, Gao B, Li K, Doig N, et al. An integrated transcriptomics and proteomics analysis reveals functional endocytic dysregulation caused by mutations in LRRK2.

Patel D, Xu C, Nagarajan S, Liu Z, Hemphill WO, Shi R, et al. Alpha-synuclein inhibits Snx3-retromer-mediated retrograde recycling of iron transporters in S. cerevisiae and C. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, et al.

A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, et al.

The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H, et al.

ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Lai C, Xie C, Shim H, Chandran J, Howell BW, Cai H. Mol Brain. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA.

Am J Pathol. Tansey KE, Cameron D, Hill MJ. Genome Med. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al.

Balaji K, Mooser C, Janson CM, Bliss JM, Hojjat H, Colicelli J. RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR. Peric A, Annaert W. Acta Neuropathol Berl. Wen L, Tang F-L, Hong Y, Luo S-W, Wang C-L, He W, et al.

Reitz C, Tokuhiro S, Clark LN, Conrad C, Vonsattel J-P, Hazrati L-N, et al. Lane RF, Steele JW, Cai D, Ehrlich ME, Attie AD, Gandy S. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH, et al. J Clin Psychiatry. Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, et al.

Differential Regulation of Amyloid-β Endocytic Trafficking and Lysosomal Degradation by Apolipoprotein E Isoforms. Nuutinen T, Huuskonen J, Suuronen T, Ojala J, Miettinen R, Salminen A.

Neurochem Int. Hopkins CR. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A cells. Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. Maxfield FR, McGraw TE. Endocytic recycling.

Nat Rev Mol Cell Biol. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Kouranti I, Sachse M, Arouche N, Goud B, Echard A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis.

Curr Biol CB. Takahashi S, Kubo K, Waguri S, Yabashi A, Shin H-W, Katoh Y, et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane.

Li X, Standley C, Sapp E, Valencia A, Qin Z-H, Kegel KB, et al. Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 Activity. Mol Cell Biol. Richards P, Didszun C, Campesan S, Simpson A, Horley B, Young KW, et al. Cell Death Differ.

Steinert JR, Campesan S, Richards P, Kyriacou CP, Forsythe ID, Giorgini F. Roberts RC, Peden AA, Buss F, Bright NA, Latouche M, Reilly MM, et al. Mistargeting of SH3TC2 away from the recycling endosome causes Charcot-Marie-Tooth disease type 4C. Woodruff G, Reyna SM, Dunlap M, Van Der Kant R, Callender JA, Young JE, et al.

Cell Rep. CoraLite® Plus FITC Plus. Alexa Fluor® Compatible Species. CoraLite Plus FITC Plus NEW. Blog Autophagy in the Pathogenesis of Disease.

Autophagy in the Pathogenesis of Disease Aging, cancer, inflammation, infection, the microenvironment, and neurodegenerative disease. Human Diseases and Autophagy Aging process The accumulation of damaged proteins is the main reason for age-associated loss of cellular function.

Human diseases caused by defects in the autophagic machinery. Autophagy, Cancer, and the microenvironment The role of autophagy in cancer is complex and paradoxical. Figure 2. IHC of paraffin-embedded human stomach tissue slide using Beclin 1 Antibody AP ; and under a 40x lens.

Neurodegenerative diseases and Autophagy Since the autophagic pathway promotes cell survival by removing unwanted cellular organelle and protein aggregates, autophagy defects in neural cells can lead to neurodegeneration 5.

Figure 3. Final remarks When it was first discovered, autophagy was thought to be simply a garbage truck for cellular components. References: 1 Medicine Nobel for research on how cells 'eat themselves'. Autophagy Signaling Pathway. Neurodegenerative diseases.

Human Diseases and Autophagy. Infectious and inflammatory diseases. Cancer and the microenvironment. Download: Autophagy Research Focus PDF. Mutations and deletions associated with the onset of human breast cancers. Heterozygous mutations associated with static encephalopathy of childhood with neurodegeneration in adulthood SENDA.

Diseas and Growth Factors. Aging, cancer, annd, infection, the Enhance cognitive recall, and neurodegenerative disease. This mechanism is tightly regulated Autophagy and disease mTOR, ULK1 complex, and ATG molecules, indicating significant crosstalk between signaling pathways 2 ; Figure 1. Figure 1. Multiple factors, including hypoxic and endoplasmic reticulum ER stress, nutrient deprivation, and oxidative stress, are involved in autophagy regulation.

Video

Autophagy and heart disease

Author: Marisar

5 thoughts on “Autophagy and disease

Leave a comment

Yours email will be published. Important fields a marked *

Design by ThemesDNA.com