Category: Diet

Caloric restriction and gut permeability

caloric restriction and gut permeability

Teleman AA, Hietakangas V, Sayadian AC, Caloric restriction and gut permeability Tut. Klindworth, A. Caloric restriction and gut permeability Rep. Calorci were maintained with feeding paper Obesity and weight management 24 hours at 25°C. A and B Error bars indicate SD of 3 independent biological replicates. CR could slightly reduce the ratio of lean mass Fig. In addition, the relative changes in the levels of microbes induced by CR also varied in the cecum and colon.

Caloric restriction and gut permeability -

Dietary restriction slows down the incidence of systemic and local infection. S3 Fig. JNK inhibition failed to rescue dMyc knockdown mediated phenotypes. S4 Fig. Inhibition of apoptosis rescues dMyc knockdown mediated gut dysfunction.

S5 Fig. Dietary restriction up-regulates dMyc expression in the gut but not other tissues. S6 Fig. S7 Fig. S1 Table. Primer sets used for qRT-PCR. s DOCX. S2 Table. Statistical analysis of the survival curves. S3 Table. Summary of the independent repeats of the lifespan analysis.

S4 Table. Acknowledgments We thank the Bloomington Stock Center and Vienna Drosophila RNAi Center for providing the fly strains. References 1. Mankertz J, Schulzke J-D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications.

Curr Opin Gastroenterol. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Publ Group. View Article Google Scholar 3. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases.

Ageing Res Rev. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans.

Mech Ageing Dev. Tran L, Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A Biol Sci Med Sci. Li Q, Estes JD, Duan L, Jessurun J, Pambuccian S, Forster C, et al. Simian immunodeficiency virus-induced intestinal cell apoptosis is the underlying mechanism of the regenerative enteropathy of early infection.

J Infect Dis. Nooteboom M, Johnson R, Taylor RW, Wright NA, Lightowlers RN, Kirkwood TBL, et al. Age-associated mitochondrial DNA mutations lead to small but significant changes in cell proliferation and apoptosis in human colonic crypts. Aging Cell.

Siggers RH, Hackam DJ. The role of innate immune-stimulated epithelial apoptosis during gastrointestinal inflammatory diseases. Cell Mol Life Sci. Biteau B, Karpac J, Supoyo S, DeGennaro M, Lehmann R, Jasper H. Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila.

PLoS Genet. Guo L, Karpac J, Tran SL, Jasper H. PGRP-SC2 Promotes Gut Immune Homeostasis to Limit Commensal Dysbiosis and Extend Lifespan. Kirkwood TBL. Intrinsic ageing of gut epithelial stem cells. Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology.

Dis Model Mech. View Article Google Scholar Ayyaz A, Jasper H. Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster. Front Cell Infect Microbiol. Lemaitre B, Miguel-Aliaga I. The Digestive Tract of Drosophila melanogaster.

Annu Rev Genet. Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol. Lemaitre B, Hoffmann J. The Host Defense of Drosophila melanogaster.

Annu Rev Immunol. Clark RI, Salazar A, Yamada R, Fitz-Gibbon S, Morselli M, Alcaraz J, et al. Distinct Shifts in Microbiota Composition during Drosophila Aging Impair Intestinal Function and Drive Mortality.

Cell Rep. Rera M, Clark RI, Walker DW. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci. Katewa SD, Kapahi P. Dietary restriction and aging, Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction.

Annu Rev Biochem. Masoro EJ. Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowl Environ SAGE KE. Partridge L. Some highlights of research on aging with invertebrates, Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang H-D, Karayan P, et al.

High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW-L, Thomas EL, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. Resnik-Docampo M, Koehler CL, Clark RI, Schinaman JM, Sauer V, Wong DM, et al.

Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nat Cell Biol. Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.

Altmann GG. Influence of starvation and refeeding on mucosal size and epithelial renewal in the rat small intestine.

Am J Anat. Dunel-Erb S, Chevalier C, Laurent P, Bach A, Decrock F, Le Maho Y. Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol A Mol Integr Physiol. Kolahgar G, Suijkerbuijk SJE, Kucinski I, Poirier EZ, Mansour S, Simons BD, et al.

Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT- Dependent Manner. Dev Cell. Suijkerbuijk SJE, Kolahgar G, Kucinski I, Piddini E. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila. Curr Biol CB. Levayer R, Moreno E.

Mechanisms of cell competition: Themes and variations. J Cell Biol. Clavería C, Giovinazzo G, Sierra R, Torres M. Myc-driven endogenous cell competition in the early mammalian embryo. Sancho M, Di-Gregorio A, George N, Pozzi S, Sánchez JM, Pernaute B, et al.

Competitive Interactions Eliminate Unfit Embryonic Stem Cellsat the Onset of Differentiation. Díaz-Díaz C, Fernandez de Manuel L, Jimenez-Carretero D, Montoya MC, Clavería C, Torres M.

Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells. Greer C, Lee M, Westerhof M, Milholland B, Spokony R, Vijg J, et al. Myc-dependent genome instability and lifespan in Drosophila.

PloS One. Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. Reduced Expression of MYC Increases Longevity and Enhances Healthspan. Lee J-E, Rayyan M, Liao A, Edery I, Pletcher SD. Acute Dietary Restriction Acts via TOR, PP2A, and Myc Signaling to Boost Innate Immunity in Drosophila.

Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS, Perrimon N, et al. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster.

Katewa SD, Akagi K, Bose N, Rakshit K, Camarella T, Zheng X, et al. Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila. Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL.

Spatiotemporal rescue of memory dysfunction in Drosophila. Rera M, Bahadorani S, Cho J, Koehler CL, Ulgherait M, Hur JH, et al. Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog. Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA.

Vasudevan D, Ryoo HD. Detection of Cell Death in Drosophila Tissues. Programmed Cell Death. New York, NY: Springer New York; Biteau B, Karpac J, Hwangbo D, Jasper H. Regulation of Drosophila lifespan by JNK signaling. Luo X, Puig O, Hyun J, Bohmann D, Jasper H.

Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation. EMBO J. Martín-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila.

Genes Dev. Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D, Bae J-W, et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Korzelius J, Naumann SK, Loza-Coll MA, Chan JS, Dutta D, Oberheim J, et al.

Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P.

Drosophila myc regulates cellular growth during development. Bosch JA, Tran NH, Hariharan IK. CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in Drosophila.

Buchon N, Broderick NA, Chakrabarti S, Lemaitre B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila.

Choi NH, Lucchetta E, Ohlstein B. Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Koehler CL, Perkins GA, Ellisman MH, Jones DL. J Proteome Res ; 12 12 : — Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O,Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP.

A branchedchain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab ; 9 4 : — Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP.

Branchedchain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia ; 55 2 : — Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks.

Am J Clin Nutr ; 85 4 : — Tavernarakis N, Driscoll M. Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev ; : — Ingram DK, Young J, Mattison JA. Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging.

Neuroscience ; 4 : — Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICROObes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K.

Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology.

Gut ; 65 3 : — Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions.

Cell Host Microbe ; 21 1 : 84— Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O.

Richness of human gut microbiome correlates with metabolic markers. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium, Doré J, Zucker JD, Clément K, Ehrlich SD.

Dietary intervention impact on gut microbial gene richness. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization.

Proc Natl Acad Sci USA ; 36 : — Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E.

Personalized nutrition by prediction of glycemic responses. Cell ; 5 : — Download references. University of Hawaii Cancer Center, Honolulu, HI, , USA. You can also search for this author in PubMed Google Scholar.

Correspondence to Wei Jia. Open Access This article is distributed under the terms of the Creative Commons Attribution 4. Reprints and permissions. Zheng, X. Calorie restriction and its impact on gut microbial composition and global metabolism. Download citation.

Received : 23 December Accepted : 27 September Published : 16 November Issue Date : December Anyone you share the following link with will be able to read this content:. Sorry, a shareable link is not currently available for this article. Provided by the Springer Nature SharedIt content-sharing initiative.

Download PDF. Abstract Calorie restriction CR is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients.

Article PDF. An insight into gut microbiota and its functionalities Article 13 October Antiaging agents: safe interventions to slow aging and healthy life span extension Article Open access 09 May Use our pre-submission checklist Avoid common mistakes on your manuscript.

References Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Science ; : — Article CAS PubMed PubMed Central Google Scholar Fontana L, Klein S. JAMA ; 9 : — Article CAS PubMed Google Scholar Zhang C, Li S, Yang L, Huang P, Li W,Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L.

Nat Commun ; 4 1 : Article CAS PubMed Google Scholar Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, Ryu H, Horvath TL, Roh GS, Hwang GS.

Sci Rep ; 6 1 : Article CAS PubMed PubMed Central Google Scholar Qu B, Halliwell B, Ong CN, Lee BL, Li QT. FEBS Lett ; 1 : 85—88 Article CAS PubMed Google Scholar Longo VD, Mattson MP.

Cell Metab ; 19 2 : — Article CAS PubMed PubMed Central Google Scholar Koubova J, Guarente L. Genes Dev ; 17 3 : — Article CAS PubMed Google Scholar Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK.

J Proteome Res ; 6 5 : — Article CAS PubMed Google Scholar Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. J Am Vet Med Assoc ; 9 : — Article PubMed Google Scholar Masoro EJ. J Gerontol ; 43 3 : B59—B64 Article CAS PubMed Google Scholar Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB, German JB, Van Loan MD.

J Nutr ; 2 : — Article CAS PubMed Google Scholar López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R.

Proc Natl Acad Sci USA ; 6 : — Article CAS PubMed PubMed Central Google Scholar Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R.

Exp Gerontol ; 44 5 : — Article CAS PubMed PubMed Central Google Scholar Su HY, Lee HC, Cheng WY, Huang SY.

Eur J Clin Nutr ; 69 3 : — Article CAS PubMed Google Scholar Schmedes MS, Yde CC, Svensson U, Håkansson J, Baby S, Bertram HC. Eur Food Res Technol ; 3 : — Article CAS Google Scholar Kim M, Lee SH, Lee JH. Aging Dis ; 7 6 : — Article PubMed PubMed Central Google Scholar Guarente L.

Cell ; 2 : — Article CAS PubMed PubMed Central Google Scholar Zheng X, Zhao A, Xie G, Chi Y, Zhao L, Li H,Wang C, Bao Y, Jia W, Luther M, Su M, Nicholson JK, Jia W.

Sci Transl Med ; 5 : ra22 Article CAS PubMed Google Scholar Goodman AL, Gordon JI. Cell Metab ; 12 2 : — Article CAS PubMed PubMed Central Google Scholar David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ.

Nature ; : — Article CAS PubMed Google Scholar Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Gut Microbes ; 9 2 : — Article PubMed Google Scholar Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H.

J Proteome Res ; 15 7 : — Article CAS PubMed Google Scholar Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. Sci Rep ; 6 1 : Article CAS PubMed PubMed Central Google Scholar Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W.

J Proteome Res ; 9 1 : — Article CAS PubMed Google Scholar Zheng X, Xie G, Jia W. Per Med ; 10 7 : — Article CAS PubMed Google Scholar Xu H, Zheng X, Jia W, Yin S. Medicine Baltimore ; 94 40 : e Article CAS Google Scholar Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H.

Sci Rep ; 7 1 : Article CAS PubMed PubMed Central Google Scholar Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C.

Dig Dis Sci ; 61 9 : — Article CAS PubMed Google Scholar Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A, Clemente A, García F, Margolles A, Ferrer M, Campoy C, Suárez A. Environ Microbiol ; 19 4 : — Article CAS PubMed Google Scholar Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L.

Front Immunol ; 8: Article CAS PubMed PubMed Central Google Scholar Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE. Exp Gerontol ; 33 3 : — Article CAS PubMed Google Scholar Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD.

Mol Carcinog ; 46 1 : 42—48 Article CAS PubMed Google Scholar Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y; EVASYON Study Group. Obesity Silver Spring ; 17 10 : — Article Google Scholar Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, Huson DH, Bischoff SC.

BioMed Res Int ; Article CAS PubMed PubMed Central Google Scholar Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C, Benítez-Páez A, Gauffin-Cano P, Medina RB. Nutrients ; 8 7 : E Article CAS PubMed Google Scholar Bernardeau M, Guguen M, Vernoux JP.

FEMS Microbiol Rev ; 30 4 : — Article CAS PubMed Google Scholar Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM.

Gut ; 55 11 : — Article CAS PubMed PubMed Central Google Scholar Sun J, Buys N. Ann Med ; 47 6 : — Article CAS PubMed Google Scholar Zhang C, Zhang M,Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L.

ISME J ; 4 2 : — Article CAS PubMed Google Scholar Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM.

PLoS One ; 4 7 : e Article CAS PubMed PubMed Central Google Scholar Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, Ott SJ.

J Med Microbiol ; 57 Pt 12 : — Article CAS PubMed Google Scholar Zweigner J, Schumann RR, Weber JR. Microbes Infect ; 8 3 : — Article CAS PubMed Google Scholar Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R.

Diabetes ; 56 7 : — Article CAS PubMed Google Scholar Brahe LK, Astrup A, Larsen LH. Obes Rev ; 14 12 : — Article CAS PubMed Google Scholar Canfora EE, Jocken JW, Blaak EE. Nat Rev Endocrinol ; 11 10 : — Article CAS PubMed Google Scholar Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. PLoS One ; 8 5 : e Article CAS PubMed PubMed Central Google Scholar Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD.

Obesity Silver Spring ; 18 1 : — Article Google Scholar Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ.

Physiol Genomics ; 27 3 : — Article CAS PubMed Google Scholar Richards SE, Wang Y, Lawler D, Kochhar S, Holmes E, Lindon JC, Nicholson JK.

Anal Chem ; 80 13 : — Article CAS PubMed Google Scholar Margolis LM, Rivas DA, Ezzyat Y, Gaffney-Stomberg E, Young AJ, McClung JP, Fielding RA, Pasiakos SM. Nutrients ; 8 9 : E Article CAS PubMed Google Scholar Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M.

Diabetes ; 51 3 : — Article CAS PubMed Google Scholar Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Cell Reports ; 11 10 : — Article CAS PubMed Google Scholar Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE.

Diabetes Care ; 32 9 : — Article CAS PubMed PubMed Central Google Scholar Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK. Mol Syst Biol ; 4: Article CAS PubMed PubMed Central Google Scholar Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ.

Am J Clin Nutr ; 84 3 : — Article CAS PubMed Google Scholar Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Toxicol Lett ; 2 : — Article CAS PubMed Google Scholar Simón E, Portillo MP, Fernández-Quintela A, Zulet MA, Martínez JA, Del Barrio AS.

Ann Nutr Metab ; 46 1 : 24—31 Article PubMed Google Scholar Selmer T, Andrei PI. Eur J Biochem ; 5 : — CAS PubMed Google Scholar Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. J Proteome Res ; 12 4 : — Article CAS PubMed Google Scholar Jové M, Naudí A, Ramírez-Núñez O, Portero-Otín M, Selman C, Withers DJ, Pamplona R.

Aging Cell ; 13 5 : — Article CAS PubMed PubMed Central Google Scholar Zheng H, Lorenzen JK, Astrup A, Larsen LH, Yde CC, Clausen MR, Bertram HC. Nutrients ; 8 3 : Article CAS PubMed PubMed Central Google Scholar Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S.

Science ; : — Article CAS PubMed Google Scholar Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. J Proteome Res ; 10 12 : — Article CAS PubMed Google Scholar Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID.

Mol Biosyst ; 1 2 : — Article CAS PubMed Google Scholar Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J, Beger RD.

BMC Bioinformatics ; 8 Suppl 7 : S3 Article CAS PubMed PubMed Central Google Scholar Hennebelle M, Roy M, St-Pierre V, Courchesne-Loyer A, Fortier M, Bouzier-Sore AK, Gallis JL, Beauvieux MC, Cunnane SC.

Nutrition ; 31 3 : — Article CAS PubMed Google Scholar Nestor G, Eriksson J, Sandström C, Malmlöf K. Anal Lett ; 48 16 : — Article CAS Google Scholar al-Waiz M, Mikov M, Mitchell SC, Smith RL. Metabolism ; 41 2 : — Article CAS PubMed Google Scholar De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I.

Age Dordr ; 35 4 : — Article CAS Google Scholar Zhang Y, Yan S, Gao X, Dai W, Liu S, Jin H, Zhang W, Mei C. Aging Clin Exp Res ; 24 5 : — CAS PubMed Google Scholar Meidenbauer JJ, Ta N, Seyfried TN.

Nutr Metab Lond ; 11 1 : 23 Article CAS PubMed PubMed Central Google Scholar Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G, Bonadonna RC, Frontoni S.

Am J Clin Nutr ; 95 3 : — Article CAS PubMed Google Scholar Szapary PO, Rader DJ. Am Heart J ; 2 : — Article CAS PubMed Google Scholar Cazzola R, Rondanelli M, Trotti R, Cestaro B.

J Nutr Biochem ; 22 4 : — Article CAS PubMed Google Scholar Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Diabetes ; 55 9 : — Article CAS PubMed Google Scholar Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, Comuzzie AG, Mahaney MC, Jowett JB, Shaw J, Curran JE, Blangero J, Meikle PJ.

J Lipid Res ; 54 10 : — Article CAS PubMed PubMed Central Google Scholar Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Nature ; : — Article CAS PubMed PubMed Central Google Scholar Eckel RH, Grundy SM, Zimmet PZ.

Lancet ; : — Article CAS PubMed Google Scholar Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov YB, Yu H, Chen T, Zhang Y,Wang C, Hu C, Su M, Xie G, Zhao A, Jia W, Jia W. EBioMedicine ; 2 10 : — Article PubMed PubMed Central Google Scholar Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ.

J Proteome Res ; 11 4 : — Article CAS PubMed PubMed Central Google Scholar Javitt NB. FASEB J ; 8 15 : — Article CAS PubMed Google Scholar Jia W, Xie G, Jia W.

Nat Rev Gastroenterol Hepatol ; 15 2 : — Article CAS PubMed PubMed Central Google Scholar Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K.

Nat Rev Drug Discov ; 7 8 : — Article CAS PubMed Google Scholar Fu ZD, Klaassen CD. Toxicol Appl Pharmacol ; 3 : — Article CAS PubMed PubMed Central Google Scholar Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, Risérus U, Rudling M.

J Intern Med ; 5 : — Article CAS PubMed Google Scholar Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. Aging Cell ; 16 3 : — CAS PubMed Google Scholar Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S.

Cell Metab ; 15 6 : — Article CAS PubMed PubMed Central Google Scholar Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J.

Nature ; : — Article CAS PubMed Google Scholar Ferbeyre G. Aging Albany NY ; 2 7 : — Article Google Scholar MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman N. Am J Physiol ; 2 : — Article CAS PubMed Google Scholar Lee CK, Klopp RG, Weindruch R, Prolla TA.

Science ; : — Article CAS PubMed Google Scholar Lee CK, Weindruch R, Prolla TA. Nat Genet ; 25 3 : — Article CAS PubMed Google Scholar Wu C, Kang JE, Peng LJ, Li H, Khan SA, Hillard CJ, Okar DA, Lange AJ.

Cell Metab ; 2 2 : — Article CAS PubMed Google Scholar Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM.

Proc Natl Acad Sci USA ; 9 : — Article CAS PubMed PubMed Central Google Scholar Gu Y, Zhao A, Huang F, Zhang Y, Liu J, Wang C, Jia W, Xie G, Jia W. J Proteome Res ; 12 12 : — Article CAS PubMed PubMed Central Google Scholar Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O,Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP.

Cell Metab ; 9 4 : — Article CAS PubMed PubMed Central Google Scholar Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP.

Diabetologia ; 55 2 : — Article CAS PubMed Google Scholar Nilsson M, Holst JJ, Björck IM. Am J Clin Nutr ; 85 4 : — Article CAS PubMed Google Scholar Tavernarakis N, Driscoll M. Mech Ageing Dev ; : — Article CAS PubMed Google Scholar Ingram DK, Young J, Mattison JA.

Neuroscience ; 4 : — Article CAS PubMed Google Scholar Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICROObes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K.

Forgot your password? Get help. Privacy Policy. Password recovery. your email. GEN — Genetic Engineering and Biotechnology News. Anatomy Animal models Cells Digestive system diseases Disease models Drosophila Epithelial cell Gastrointestinal diseases Immune response Immunology Inflammation Inflammatory bowel disease Insects Medicine, Diagnosis, and Therapeutics Research and development Systemic conditions.

All Rights Reserved.

Flies eating perkeability Spartan diet permesbility protected caloric restriction and gut permeability leaky csloric caloric restriction and gut permeability the pemreability inflammation associated with it as they age. Conversely, flies on a rich Caloric restriction and gut permeability diet Managing diabetic neuropathy more prone to reetriction intestinal permeability, a condition linked reztriction a Non-toxic cleaning products of human conditions including inflammatory bowel disease. Publishing in PLOS Geneticsresearchers aand the Kapahi lab at the Buck Institute show that gaps in the intestinal barrier are caused by an age-related increase in the death of intestinal epithelial cells, also known as enterocytes. Lead scientist Kazutaka Akagi, a former postdoc in the Kapahi lab who now runs his own lab at the National Center for Geriatrics and Gerontology in Aichi, Japan, zeroed in on dMyc, a gene involved in cell proliferation. He observed that levels of dMyc act as a barometer of cellular fitness in enterocytes, post-mitotic intestinal cells. He found that cells that have too little dMyc get eliminated by neighboring cells through a process termed "cell competition" in an attempt to maintain gut health. Calorie restriction CR is restrictoon dietary regimen that caloric restriction and gut permeability Healthy desserts to satisfy sugar cravings caloric restriction and gut permeability without incurring malnutrition or a reduction in essential nutrients. It has long permebaility recognized as a natural strategy restiction promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the destriction review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis.

Author: Nisho

3 thoughts on “Caloric restriction and gut permeability

Leave a comment

Yours email will be published. Important fields a marked *

Design by ThemesDNA.com